منابع مشابه
Erratum: Applications of epi-retractable and co-epi-retractable modules
In this errata, we reconsider and modify two propositions and their corollaries which were written on epi-retractable and co-epi-retractable modules.
متن کاملApplications of Epi-Retractable and Co-Epi-Retractable Modules
A module M is called epi-retractable if every submodule of M is a homomorphic image of M. Dually, a module M is called co-epi-retractable if it contains a copy of each of its factor modules. In special case, a ring R is called co-pli (resp. co-pri) if RR (resp. RR) is co-epi-retractable. It is proved that if R is a left principal right duo ring, then every left ideal of R is an epi-retractable ...
متن کاملapplications of epi-retractable and co-epi-retractable modules
a module m is called epi-retractable if every submodule of m is a homomorphic image of m. dually, a module m is called co-epi-retractable if it contains a copy of each of its factor modules. in special case, a ring r is called co-pli (resp. co-pri) if rr (resp. rr) is co-epi-retractable. it is proved that if r is a left principal right duo ring, then every left ideal of r is an epi-retractable ...
متن کاملApplications of epi-retractable modules
An R-module M is called epi-retractable if every submodule of MR is a homomorphic image of M. It is shown that if R is a right perfect ring, then every projective slightly compressible module MR is epi-retractable. If R is a Noetherian ring, then every epi-retractable right R-module has direct sum of uniform submodules. If endomorphism ring of a module MR is von-Neumann regular, then M is semi-...
متن کاملerratum: applications of epi-retractable and co-epi-retractable modules
in this errata, we reconsider and modify two propositions and their corollaries which were written on epi-retractable and co-epi-retractable modules.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Pure and Applied Mathematics
سال: 2019
ISSN: 1307-5543
DOI: 10.29020/nybg.ejpam.v12i3.3461